In [1]:
from datasets import Dataset, load_dataset
# TODO: I hate using globals like this, but I cannot come up with a cleaner alternative right now
In [2]:
%%capture
import torch
major_version, minor_version = torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass
In [3]:
from unsloth import FastLanguageModel
import torch
max_seq_length = 25536 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False # Use 4bit quantization to reduce memory usage. Can be False.

# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
    "unsloth/mistral-7b-bnb-4bit",
    "unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
    "unsloth/llama-2-7b-bnb-4bit",
    "unsloth/llama-2-13b-bnb-4bit",
    "unsloth/codellama-34b-bnb-4bit",
    "unsloth/tinyllama-bnb-4bit",
    "unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
    "unsloth/gemma-2b-bnb-4bit",
] # More models at https://huggingface.co/unsloth

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/llama-2-13b-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)
🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.
==((====))==  Unsloth 2024.9.post4: Fast Llama patching. Transformers = 4.44.2.
   \\   /|    GPU: NVIDIA A100-SXM4-40GB. Max memory: 39.394 GB. Platform = Linux.
O^O/ \_/ \    Pytorch: 2.4.0+cu121. CUDA = 8.0. CUDA Toolkit = 12.1.
\        /    Bfloat16 = TRUE. FA [Xformers = 0.0.27.post2. FA2 = True]
 "-____-"     Free Apache license: http://github.com/unslothai/unsloth
Unsloth: unsloth/llama-2-13b can only handle sequence lengths of at most 4096.
But with kaiokendev's RoPE scaling of 6.234, it can be magically be extended to 25536!
Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]
In [4]:
model = FastLanguageModel.get_peft_model(
    model,
    r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 16,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for long context
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
)
Unsloth 2024.9.post4 patched 40 layers with 40 QKV layers, 40 O layers and 40 MLP layers.
In [5]:
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
    instructions = examples["instruction"]
    inputs       = examples["input"]
    outputs      = examples["output"]
    texts = []
    for instruction, input, output in zip(instructions, inputs, outputs):
        # Must add EOS_TOKEN, otherwise your generation will go on forever!
        text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
        texts.append(text)
    return { "text" : texts, }
pass

from datasets import load_dataset
dataset = load_dataset("Yukang/LongAlpaca-12k", split = "train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
Repo card metadata block was not found. Setting CardData to empty.
In [6]:
print(model)
PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): LlamaForCausalLM(
      (model): LlamaModel(
        (embed_tokens): Embedding(32000, 5120)
        (layers): ModuleList(
          (0-39): 40 x LlamaDecoderLayer(
            (self_attn): LlamaAttention(
              (q_proj): lora.Linear(
                (base_layer): Linear(in_features=5120, out_features=5120, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=5120, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=5120, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (k_proj): lora.Linear(
                (base_layer): Linear(in_features=5120, out_features=5120, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=5120, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=5120, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (v_proj): lora.Linear(
                (base_layer): Linear(in_features=5120, out_features=5120, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=5120, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=5120, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (o_proj): lora.Linear(
                (base_layer): Linear(in_features=5120, out_features=5120, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=5120, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=5120, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (rotary_emb): LlamaLinearScalingRotaryEmbedding()
            )
            (mlp): LlamaMLP(
              (gate_proj): lora.Linear(
                (base_layer): Linear(in_features=5120, out_features=13824, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=5120, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=13824, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (up_proj): lora.Linear(
                (base_layer): Linear(in_features=5120, out_features=13824, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=5120, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=13824, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (down_proj): lora.Linear(
                (base_layer): Linear(in_features=13824, out_features=5120, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=13824, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=5120, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (lora_magnitude_vector): ModuleDict()
              )
              (act_fn): SiLU()
            )
            (input_layernorm): LlamaRMSNorm((5120,), eps=1e-05)
            (post_attention_layernorm): LlamaRMSNorm((5120,), eps=1e-05)
          )
        )
        (norm): LlamaRMSNorm((5120,), eps=1e-05)
        (rotary_emb): LlamaRotaryEmbedding()
      )
      (lm_head): Linear(in_features=5120, out_features=32000, bias=False)
    )
  )
)
In [7]:
from trl import SFTTrainer
from transformers import TrainingArguments

max_seq_length = 25536

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    dataset_num_proc = 2,
    packing = False, # Can make training 5x faster for short sequences.
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        warmup_steps = 4,
        max_steps = 2, # Use num_train_epochs=1 instead. We use this to make training faster
        learning_rate = 2e-4,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
    ),
)
Map (num_proc=2):   0%|          | 0/12000 [00:00<?, ? examples/s]
max_steps is given, it will override any value given in num_train_epochs
In [8]:
#@title Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
GPU = NVIDIA A100-SXM4-40GB. Max memory = 39.394 GB.
25.162 GB of memory reserved.
In [9]:
trainer_stats = trainer.train()
==((====))==  Unsloth - 2x faster free finetuning | Num GPUs = 1
   \\   /|    Num examples = 12,000 | Num Epochs = 1
O^O/ \_/ \    Batch size per device = 2 | Gradient Accumulation steps = 4
\        /    Total batch size = 8 | Total steps = 20
 "-____-"     Number of trainable parameters = 62,586,880
torch.Size([2, 25536, 5120])
torch.Size([2, 7327, 5120])
torch.Size([2, 10390, 5120])
torch.Size([2, 7596, 5120])
[20/20 22:16, Epoch 0/1]
Step Training Loss
1 3.766700
2 3.724200
3 3.965900
4 3.507000
5 3.210900
6 2.953400
7 2.868400
8 2.678200
9 2.723600
10 2.845700
11 2.839100
12 2.554300
13 2.861300
14 2.358900
15 2.459000
16 2.356900
17 2.416600
18 2.476900
19 2.433400
20 2.524200

torch.Size([2, 25536, 5120])
torch.Size([2, 9019, 5120])
torch.Size([2, 18487, 5120])
torch.Size([2, 6547, 5120])
torch.Size([2, 10562, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 17146, 5120])
torch.Size([2, 9230, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 7845, 5120])
torch.Size([2, 9486, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 7607, 5120])
torch.Size([2, 8356, 5120])
torch.Size([2, 10552, 5120])
torch.Size([2, 8206, 5120])
torch.Size([2, 178, 5120])
torch.Size([2, 8355, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 18572, 5120])
torch.Size([2, 15266, 5120])
torch.Size([2, 97, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 9336, 5120])
torch.Size([2, 14387, 5120])
torch.Size([2, 381, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 14744, 5120])
torch.Size([2, 16753, 5120])
torch.Size([2, 154, 5120])
torch.Size([2, 8847, 5120])
torch.Size([2, 9558, 5120])
torch.Size([2, 10207, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 10274, 5120])
torch.Size([2, 17392, 5120])
torch.Size([2, 7959, 5120])
torch.Size([2, 93, 5120])
torch.Size([2, 18240, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 11225, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 17025, 5120])
torch.Size([2, 8291, 5120])
torch.Size([2, 9287, 5120])
torch.Size([2, 18961, 5120])
torch.Size([2, 130, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 17034, 5120])
torch.Size([2, 8802, 5120])
torch.Size([2, 18578, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 12574, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 17591, 5120])
torch.Size([2, 12382, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 9138, 5120])
torch.Size([2, 9189, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 12923, 5120])
torch.Size([2, 24009, 5120])
torch.Size([2, 8834, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 16868, 5120])
torch.Size([2, 7755, 5120])
torch.Size([2, 8075, 5120])
torch.Size([2, 25536, 5120])
torch.Size([2, 8777, 5120])
torch.Size([2, 18509, 5120])
torch.Size([2, 9561, 5120])
In [10]:
#@title Show final memory and time stats
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory         /max_memory*100, 3)
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
1394.9632 seconds used for training.
23.25 minutes used for training.
Peak reserved memory = 38.33 GB.
Peak reserved memory for training = 13.168 GB.
Peak reserved memory % of max memory = 97.299 %.
Peak reserved memory for training % of max memory = 33.426 %.
In [ ]: