In [1]:
from datasets import Dataset, load_dataset
# TODO: I hate using globals like this, but I cannot come up with a cleaner alternative right now
In [2]:
%%capture
import torch
major_version, minor_version = torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass
In [3]:
from unsloth import FastLanguageModel
import torch
max_seq_length = 65536 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False # Use 4bit quantization to reduce memory usage. Can be False.

# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
    "unsloth/mistral-7b-bnb-4bit",
    "unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
    "unsloth/llama-2-7b-bnb-4bit",
    "unsloth/llama-2-13b-bnb-4bit",
    "unsloth/codellama-34b-bnb-4bit",
    "unsloth/tinyllama-bnb-4bit",
    "unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
    "unsloth/gemma-2b-bnb-4bit",
] # More models at https://huggingface.co/unsloth

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/llama-2-13b-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)
🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.
==((====))==  Unsloth 2024.9.post4: Fast Llama patching. Transformers = 4.44.2.
   \\   /|    GPU: NVIDIA A100-SXM4-40GB. Max memory: 39.394 GB. Platform = Linux.
O^O/ \_/ \    Pytorch: 2.4.0+cu121. CUDA = 8.0. CUDA Toolkit = 12.1.
\        /    Bfloat16 = TRUE. FA [Xformers = 0.0.27.post2. FA2 = True]
 "-____-"     Free Apache license: http://github.com/unslothai/unsloth
Unsloth: unsloth/llama-2-13b can only handle sequence lengths of at most 4096.
But with kaiokendev's RoPE scaling of 16.0, it can be magically be extended to 65536!
Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]
In [4]:
model = FastLanguageModel.get_peft_model(
    model,
    r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 16,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for long context
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
)
Unsloth 2024.9.post4 patched 40 layers with 40 QKV layers, 40 O layers and 40 MLP layers.
In [5]:
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
    instructions = examples["instruction"]
    inputs       = examples["input"]
    outputs      = examples["output"]
    texts = []
    for instruction, input, output in zip(instructions, inputs, outputs):
        # Must add EOS_TOKEN, otherwise your generation will go on forever!
        text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
        texts.append(text)
    return { "text" : texts, }
pass

from datasets import load_dataset
dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
In [6]:
from trl import SFTTrainer
from transformers import TrainingArguments

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    dataset_num_proc = 2,
    packing = False, # Can make training 5x faster for short sequences.
    args = TrainingArguments(
        per_device_train_batch_size = 40,
        gradient_accumulation_steps = 4,
        warmup_steps = 4,
        max_steps = 20, # Use num_train_epochs=1 instead. We use this to make training faster
        learning_rate = 2e-4,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
    ),
)
max_steps is given, it will override any value given in num_train_epochs
In [7]:
#@title Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
GPU = NVIDIA A100-SXM4-40GB. Max memory = 39.394 GB.
25.416 GB of memory reserved.
In [8]:
trainer_stats = trainer.train()
==((====))==  Unsloth - 2x faster free finetuning | Num GPUs = 1
   \\   /|    Num examples = 51,760 | Num Epochs = 1
O^O/ \_/ \    Batch size per device = 40 | Gradient Accumulation steps = 4
\        /    Total batch size = 160 | Total steps = 20
 "-____-"     Number of trainable parameters = 62,586,880
[20/20 12:58, Epoch 0/1]
Step Training Loss
1 4.055600
2 4.043100
3 4.018000
4 3.935200
5 3.619900
6 3.019000
7 2.720100
8 2.456200
9 2.161900
10 1.833400
11 1.701800
12 1.562200
13 1.431000
14 1.386500
15 1.307300
16 1.280300
17 1.266100
18 1.196200
19 1.174900
20 1.165600

In [9]:
#@title Show final memory and time stats
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory         /max_memory*100, 3)
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
823.0075 seconds used for training.
13.72 minutes used for training.
Peak reserved memory = 37.129 GB.
Peak reserved memory for training = 11.713 GB.
Peak reserved memory % of max memory = 94.25 %.
Peak reserved memory for training % of max memory = 29.733 %.
In [ ]:
 
In [ ]:
 
In [ ]: